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1 Introduction



The goal of our paper is to consider a financial market equilibrium where agents derive

utility from the act of trading. In much of our work, information is symmetric and there

are multiple assets, each traded by agents who possess the standard exponential-normal

utility function over wealth but some of whom get additional utility from trading. We

do not model the origins of this utility; it could possibly emanate from the thrill of

seeing position values fluctuate. The notion that agents may gamble for pleasure is well-



equilibrium declines as the direct utility from trading rises.

It is reasonable to suppose that agents may derive greater utility from some stocks

relative to others. The two main characteristics proposed by Kumar (2009) for stocks

that are attractive to individual investors are high (positive) skewness, and high volatil-

ity. Since our model has normally distributed payoffs it unfortunately cannot speak to

skewness preference. We instead consider the assumption that agents obtain more utility

from stocks with more volatile payoffs. We find evidence that under reasonable condi-

tions, such lity



with agents desiring greater utility from trading that stock. However, stocks from which



should exhibit greater trading volume and lower volatility, and less evidence of covariance

risk pricing. These stocks should also exhibit nonlinear responses to positive news. Our

analysis also suggests that covariance risk pricing should be less visible in countries or

economies where retail investors form a bigger fraction of the trading population.

The idea that agents may trade for purposes of deriving enjoyment from trading is not

new; but explicit theoretical modeling of this notion does not yet appear in the literature.



how agents who derive direct utility from trading affect price informativeness. Section 5

presents a dynamic extension, and Section 6 concludes. All proofs of propositions and

corollaries, unless otherwise stated, appear in Appendix A, while Appendix B presents

some ancillary derivations.

2 The Model

There are two dates, 0 and 1, and K + N risky securities. At date 1, these securities

pay liquidating dividends of V = (V1, ..., VK+



The utility function of the i’th regular (non-G) trader is the standard exponential one:

U(Wi1) = −exp(−γWi1),

with γ > 0. Based on the normality assumption of our model, he chooses Xi to maximize

E
[

U(Wi1)
]

= −exp
[

− γWi0 − γ
[

X ′

iE(V − P ) − 0.5γX ′

iVar(V )Xi

]

]

.

The first order condition (f.o.c.) with respect to (w.r.t.)



take more aggressive positions relative to traditional utility maximizers. As the utility of

trading increases, the position vector explodes, and beyond a certain level of G, there is

no interior optimum. The scale of the position taken per unit expected price appreciation

increases in G, which governs how much additional utility is derived from trading.

2.1 Risky Security Payoffs–The Factor Structure

We now explicitly model security payoffs as a factor structure to analyze how volume,

volatility, and the pricing of covariance risk are affected by the presence of G traders. In

what follows, unless otherwise specified, a generic random variable, η̃, follows a normal

distribution with mean zero and variance νη.

The payoff of the j’th risky security takes a factor expression:

Vj = V̄j +
K

∑

k=1

(βjkf̃k) + ε̃j (1)

All f̃ ’s and ε̃’s follow independent normal distributions.

2.2 An Equivalent Maximization Problem

As in Daniel, Hirshleifer, and Subrahmanyam (2001), we use the risky securities to

construct portfolios mimicking the K factors and N residuals. We refer to these portfolios



price volatility). To simplify our analysis, we assume that the variance νzj
is sufficiently

small. Specifically, we assume that

νzj
<

1

γ2νθj

min(1/4, ρ/2). (2)

This condition facilitates the derivation of the results because it ensures that theG traders’

penchant for aggressively “buying low and selling high,” which drives many of our results,

is not too adversely affected by excessive supply noise. The assumption is reasonable

because we would not expect uncertainty in stock issuance and buyback activity to be

unduly large in general.

We denote the utility from trading the j’th basic security as Gj. This implies that the



The market clearing condition requires

ξ̄j + z̃j = ρXNG,j(Pj) + (1 − ρ)XG,j (Pj),

from which we derive the prices and returns (i.e., price changes) as presented in the

following proposition.

Proposition 1 The price and the return of the j’th basic security are given by

Pj = −γaj(Gj)(ξ̄j + z̃j),

R̃j = θ̃j − Pj = θ̃j + γaj(Gj)(ξ̄j + z̃j),

where aj(Gj) =
1



basic security is given by

EΠNG,j = E
[

XNG,j(Pj)R̃j

]

= E

[

γaj(Gj)(ξ̄j + z̃j)

γνθj

(θ̃j + γaj(Gj)(ξ̄j + z̃j))

]

=
γaj(Gj)

2

νθj

(ξ̄2

j + νzj
),

EΠG,j = E
[

XG,j(Pj)R̃j

]

= E

[

γaj(Gj)(ξ̄j + z̃j)

γ(νθj
−Gj/γ2)

(θ̃j + γaj(Gj)(ξ̄j + z̃j))

]

=
γaj(Gj)

2

νθj
−Gj/γ2

(ξ̄2

j + νzj
). (5)

Note that EΠG,j > EΠNG,j. Thus, G traders earn a greater expected profit from trading

the basic security than do non-G traders. This simply emanates from the notion that, in



2.3 Volatility

It follows from Proposition 1 that the price and return volatilities of the j’th basic security

are





Proposition 2 (i) Consider two basic securities, j and j′, with νθj
= νθj′

, νzj
= νzj′

,

but Gj > Gj′ . Then, λj < λj′ .

(ii) The basic security with very large Gj (i.e., Gj/γ
2 ↗ νθj

) has λj ↘ 0.

This proposition suggests that high Gj can lead to low λj and, therefore, attenuate the

predictive power of β’s. Particularly, λj ↘ 0 for stocks with very large Gj (i.e., Gj/γ
2 ↗

νθj
). In this extreme case, β’s lose power in explaining stock return completely. The

basic intuition is that G-traders, via their tendency to “buy low and sell high” attenuate



net supply, a high average price denotes a high risk premium on average, and prices on

average decrease as they converge to fundamental values. Thus “overpricing” is a natural

feature of markets with positive net supply even without G-traders. However, since G

traders get direct utility from trading, when they absorb risky supplies, they are willing

on average to pay more than rational investors for absorbing a given amount of supply,

leading to greater “overpricing” than that naturally induced by risk premia.

2.5 Trading Volume

We now examine trading volume within our model. We aim to ascertain how trading

volume is influenced by the presence of agents who derive direct utility from trading, and

to investigate how volume might be associated with required returns on risky assets.

Let us assume that the initial endowment of the j’th basic security possessed by each

agent equals the per capita mean supply ξ̄j + z̃j. It follows from Eq. (3) and Proposition 1

that the i’th non-G trader’s trade equals

XNG,j(Pj) − (ξ̄j + z̃j) ∼ N

[

(µ

nw
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Eqs. (9) and (10), we can express the total expected trading volume in the basic security

as

Tj ≡ 0.5ρE
[

|XNG,j(Pj) − (ξ̄j + z̃j)|
]

+ 0.5(1 − ρ)E
[

|XG,j(Pj) − (ξ̄j + z̃j)|
]

. (11)

We then have the following result.

Corollary 3 The expected trading volume, Tj, increases in Gj .

Corollary 3 indicates that stocks in which agents have a greater level of utility from

trading exhibit greater trading volume, which is an intuitive result. Since the β-adjusted

expected return is more negative, the greater is Gj (Proposition 3), our analysis indicates

that, ceteris paribus, stocks with high volume (i.e., high Gj stocks) will earn low average

returns on a risk-adjusted basis. This is consistent with the negative relation between

trading volume and required returns documented, for example, in Datar, Naik, and Rad-

cliffe (1998) and Brennan, Chordia, and Subrahmanyam (1998).8 Based on Merton

(1987) who argues that some (possibly, retail) investors might invest only in the most

visible stocks, visibility (as measured by analyst following and brand visibility) might be

a reasonable proxy for Gj. Our analysis suggests that such proxies will be associated with

high volume and low average returns. In the next subsection, we consider another proxy

for Gj, the volatility of the underlying asset’s cash flows.



more attracted to volatile companies.9 We thus assume that Gj = µνθj
where µ < γ2 (the

assumption on µ is needed to obtain an interior optimum). We show below that under

reasonable conditions, our analysis accords with Ang, Hodrick, Xing, and Zhang (2006),

who demonstrate a negative cross-sectional relation betwe



Lemma 1 and Proposition 4 imply that for typical basic securities, there is a negative

relation (induced by νθj
) between IVOL and the β-adjusted expected return. This is

broadly consistent with Ang, Hodrick, Xing, and Zhang (2006), where stocks with high

idiosyncratic volatility earn lower average returns. Proxying for total volatility by νθj
,

our analysis also accords with Baker and Haugen (2012) who show that low risk stocks

outperform high risk stocks in the vast majority of international equity markets.

The above analysis indicates that total volatility is negatively priced in the cross-

section. However, in aggregate, risk is positively priced. To see this, note from Propo-

sition 1 that the return of the market portfolio (over the risk free interest rate which is

normalized to be zero) is given by

R̃M =
K+N
∑

j=1

(ξ̄j + z̃j)R̃j =
K+N
∑

j=1

[

(ξ̄j + z̃j)(θ̃j + γaj(Gj)(ξ̄j + z̃j))
]

. (13)

The following proposition can readily be derived.

Proposition 5 The market risk premium, E(R̃M ), is positive.

Thus, our model is consistent with the negative pricing of volatility in the cross-section,

but a positive pricing of risk in the aggregate (Haugen and Baker (2010), Ang, Hodrick,

Xing, and Zhang (2006), and Mehra and Prescott (1985)).

2.7 Back to the Original Securities

The previous analysis focused on the basic securities for tractability. We now show that

our main results carry over to the original securities. We can use Eq. (1) to reconstruct



the return of the original risky asset can be expressed as:

R̃j =
K

∑

k=1

βjk

[

θ̃k + γak(Gk)(ξ̄k + z̃k



Proposition 2 indicates that λj =
γaj(Gj)Var(R̃M )

νθj
+ 2γ2aj(Gj)2νzj

, the slope of the relation between

E(R̃j) and βjM , decreases in Gj and can be as low as zero.

One can estimate IVOLj by regressing R̃j on factor mimicking portfolios’ and the

market portfolio’s returns. From Eq. (14) we see that after a



3 Comparing to the Economy With No or Partial

Presence of G Traders

We now compare the equilibria with (i) complete absence of the G traders and (ii) presence

of the G traders in some, but not all, securities. For simplicity, the analysis in this section

is focused on the basic securities.

3.1 Comparing to the Economy With No G Traders

Consider two economies. In the first economy, all agents are non-G traders, while in the

second, all are G traders. For a variable η in the basic economy, we use ηA,G and ηA,NG

to indicate its counterpart in the all-G and all-non-G economies.

The first economy, the all-non-G economy, is equivalent to the basic economy with

ρ = 1 and aj(Gj) = νθj
. Using a similar derivation as that for Proposition 1, we can show



where βA,NG
jM =

Cov(R̃A,NG
j , R̃A,NG

M )

Var(R̃A,NG
M )

.

Let λA,NG
j ≡ γνθj

Var(R̃A,NG
M )

νθj
+ 2γ2ν2

θj
νzj

denote the slope of the relation between E(R̃A,NG
j ) and

βA,NG
jM . An obvious observation is that λA,NG

j > 0. Therefore, β’s still have power to

predict stock returns. If νzj
= 0, then λA,NG

j = γVar(R̃A,NG
M ) is identical across all assets.

In this case, β’s are the only predictive variable for expected returns.

The second economy, the all-G economy, is equivalent to the basic economy with ρ = 0

and aj(Gj) = νθj
− Gj/γ

2. Using a similar derivation as that for Proposition 1, we can

show that the price and return of the j’th basic security is given by

PA,G
j = −γ(νθj

−Gj/γ
2)(ξ̄j + z̃j),

R̃A,G
j = θ̃j + γ(νθj

−Gj/γ
2)(ξ̄j + z̃j). (18)

The return of the market portfolio is R̃A,G
M =

K+N
∑

j=1

(ξ̄j + z̃j)R̃
A,G
j .

Similar to Eq. (7), the covariance between the returns of the basic security and the

market portfolio is given by

Cov(R̃A,G
j , R̃A,G

M ) = Cov(R̃A,G
j , (ξ̄j + z̃j)R̃

A,G
j ) = νθj

ξ̄j + 2γ2(νθj
−Gj/γ

2)2νzj
ξ̄j.

Then, the expected return of the basic security can be expressed as:

E(R̃A,G
j ) = γ(νθj

−Gj/γ
2)ξ̄j =

γ(νθj
−Gj/γ

2)Var(R̃A,G
M )

νθj
+ 2γ2(νθj

−Gj/γ2)2νzj

βA,G
jM ,

where βA,G
jM =

Cov(R̃A,G
j , R̃A,G

M )

Var(R̃A,G
M )

.

We compare the two economies in the following proposition.

Proposition 6 (i) E(R̃A,NG
j ) > E(R̃A,G

j ) and Var(R̃A,NG
j ) > Var(R̃A,G

j ). Thus, the

j’th basic security has higher expected return and volatility in the all-non-G economy

than in the all-G economy.

22



(ii) E(R̃A,NG
M ) > E(R̃A,G

M ) and Var(R̃A,NG
M ) > Var(R̃A,G

M ). Thus, the market portfolio

has higher expected return and volatility in the all-non-G economy than in the all-G

economy.

(iii) λA,NG
j > λA,G

j . Thus, β’s have more predictive power in the all-non-G economy than

in the all-G economy.

In general, within the all-G





The above proposition implies that beta pricing will be less evident in securities that

are traded relatively more by G traders. Again, the notion is simply that G traders, via

their more aggressive trading in securities where they are present, attenuate the pricing of

risk. The above proposition indicates cross-sectional variation in risk pricing according to

whether G traders are more or less likely to be present. Thus, if retail investors are more

likely to be present in visible, brand name stocks (Frieder and Subrahmanyam (2005)),

then covariance risk pricing will be less evident in these stocks.

4 G Traders and the Informational Efficiency of Stock

Prices

We now consider a model with information asymmetry which allows us to examine how G



endowments of riskfree assets and preferences are unchanged relative to the basic model

and the direct utility parameter is denoted by G (without the subscript to denote the

single asset). We modify the basic model by postulating that each G trader can observe

θ̃ by spending a positive and constant cost c. In equilibrium, a mass (1−ρ)τ of G traders

choose to become informed by paying the cost c; a mass (1−ρ)(1−τ ) of G traders choose

to remain uninformed. τ ∈ [0, 1] is determined in equilibrium. The following proposition

describes the pricing function in this setting:

Proposition 8 In equilibrium, the price function takes a linear form

P = V̄ − a + bω(θ̃, z̃), (19)

where ω(θ̃, z̃) = θ̃ − fz̃ (or simply ω) has a variance νω = νθ + f2νz. The parameters, a,

b, and f , are given by

a =
ξ̄

N1 +N2 +N3

,

b =
N1 +N2 +N3

νθ

νω

N1 +N2 +N3

,

f =
1

N1 +N2

,

where

N1 ≡ ρ

γνε

,

N2 ≡ (1 − ρ)τ

γ(νε −G/γ2)
,

N3 ≡ (1 − ρ)(1 − τ )

γ(νθ(1 − νθ

νω

) + νε −G/γ2)
.

Using standard Grossman and Stiglitz (1980)-type arguments, we can derive the following

lemma:

26



Lemma 2 If ψ(τ ) ≡ exp(2γc) · Var(V |θ̃) −G/γ2

Var(V |ω) −G/γ2
− 1 is negative (positive), then the G

trader prefers to become informed by spending c (remain uninformed). If ψ(τ ) = 0, then

he is indifferent between becoming informed and remaining uninformed.

In the above lemma, ψ(τ ) is a function of τ because according to Proposition 8, f and

therefore Var(V |ω) are functions of τ .

Proposition 9 τ ∈ [0, 1]



obtained from Proposition 8) and therefore the informativeness of ω = θ̃− fz̃, Var(V |ω).

Second, G may increase or decrease τ , the mass of G traders who choose to become

informed, and therefore increase or decrease the informativeness of ω = θ̃− fz̃, Var(V |ω).

The appendix shows that the first effect dominates. Therefore, taken together, Var(V |ω)

decreases in G.

Part (ii) states that Var(V |ω) does not depend on ρ. The reason for this is that

as Eq. (20) indicates, an increase in ρ, the mass of informed non-G traders, reduces

(1 − ρ)τ , the mass of informed G traders. Thus, f =
1

ρ

γνε

+
(1 − ρ)τ

γ(νε −G2/γ)

and therefore

the informativeness of ω = θ̃ − fz̃, Var(V |ω), remain unchanged.

Overall, we find an increase in utility derived from trading leads to increased price

informativeness in equilibrium but the mass of G traders does not affect this informative-

ness.

5 A Dynamic Extension: Equilibrium Where Trad-

ing Value Depends on Past Market Outcomes

We now consider a dynamic extension of our setting where the utility from trading depends

on past profits. Specifically, we model the notion that if an agent earns positive profits,



cause an overreaction to mildly positive information.

We assume that a single risky security is traded at Dates t = 0, 1, 2, and 3 and revert

to the case of symmetric information.11



where Xi2 is the quantity of risky security he has bought at date 2 and continues to hold

until the end of the game, and G is a positive constant.

The i’th trader is endowed with X̄i0 units of risky securities. For convenience, we let

θ̃t’s, t = 1, 2, and 3, have the same variance νθ. Let the price and return of the risk free

asset be 1. We then have the following result:

Proposition 10 There is an equilibrium characterized by the following prices:

• P0 is given by

P0 = V̄ +Hθ − 2γνθ ξ̄,

where a(G) =
1

ρ

νθ

+
1 − ρ

νθ −G/γ2

. The variable Hθ is uniquely determined by

0 =
∫

∞

Hθ

θ̃1 −Hθ + γ(νθ − a(G))ξ̄

exp(γξ̄θ̃1)

·
[

ρexp(−0.5
(γa(G)ξ̄)2

νθ

) + (1 − ρ)exp(−0.5
(γa(G)ξ̄)2

νθ −G/γ2
)
]

dΦ(
θ̃1√
νθ

)

+
∫ Hθ

−∞

θ̃1 −Hθ

exp
[

γξ̄(θ̃1 − γ(νθ − a(G))ξ̄)
]exp(−0.5

(γνθξ̄)
2

νθ

)dΦ(
θ̃1√
νθ

).

and Φ(.) is the cumulative density function of standard normal distribution.

• If θ̃1 > Hθ, then

P1 = V̄ + θ̃1 − γνθ ξ̄ − γa(G)ξ̄,

P2 = V̄ + θ̃1 + θ̃2 − γa(G)ξ̄.

Because P1 > P0, a mass 1−ρ of traders convert to G traders immediately following

Date 1.
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• If θ̃1 ≤ Hθ, then

P1 = V̄ + θ̃1 − 2γνθ ξ̄,

P2 = V̄ + θ̃1 + θ̃2 − γνθ ξ̄.

Because P1 ≤ P0, all traders remain non-G traders throughout the timeline.

Here is a sketch of the proof of this proposition (the formal proof is in the Appendix). We

use backward induction. There are three steps. In the first step, we study the equilibrium

demands and prices at Dates 1 and 2 conditional on the event that at Date 1, traders

make money because θ̃1 > Hθ so P1 > P0 (call this Regime 1). Note that in this regime,

at Date 2, there is a mass ρ (1 − ρ) of non-G traders (G traders). At Date 1, an agent

knows that he will be a non-G trader (G trader) with probability ρ (1− ρ). In the second

step, we study the equilibrium demands and prices at dates 1 and 2 conditional on the

event that at Date 1, traders do not make money because θ̃1 ≤ Hθ so P1 ≤ P0 (call this

Regime 2). This step is simpler than the first step because all traders are non-G traders.

In the third step, we focus on Date 0, and derive the expressions for P0 and the threshold

Hθ.

There are two interesting results. The first relates to the price reaction for θ̃1 around

the threshold Hθ:

P1(θ̃1 ↘ Hθ) = V̄ + θ̃1 − γνθ ξ̄ − γa(G)ξ̄,

P1(θ̃1 ↗ Hθ) = V̄ + θ̃1 − 2γνθ ξ̄.

It is easy to show that

P1(θ̃1 ↘ Hθ) − P1(θ̃1 ↗ Hθ) = γνθ ξ̄ − γa(G)ξ̄ > 0,

because a(G) < a(0) = νθ. This suggests a small θ̃1 (e.g., earnings) can induce a significant

price movement. Another interpretation of this observation is that a relatively minor piece



The second result relates to long-run performance. If θ̃1 > Hθ, then the subsequent

returns are

P2 − P1 = θ̃2 + γνθξ̄, and V − P2 = θ̃3 + γa(G)ξ̄.

If θ̃1 ≤ Hθ, then the subsequent returns are

P2 − P1 = θ̃2 + γνθξ̄, and V − P2 = θ̃3 + γνθξ̄.

A comparison between these two cases suggests that if θ̃1 > Hθ, then there is a long-run

underperformance because a(G) < a(0) = νθ. Thus, a minor piece of good news can cause

securities to become dramatically overpriced and thus exhibit subpar returns in the long

run.

Figure 1 plots the price paths conditional on the public announcement θ̃1. We assume

the parameter values V̄ = 5, νθ = 1, ξ̄ = 1, γ = 0.5, ρ = 0.5, and G = 0.2. The

realizations of θ̃2 and θ̃3 are assumed to be zero, i.e., their mean. This implies that the

threshold Hθ = −0.388. Moving from the bottom to the top, each path in the figure

represents a realization of θ̃1 from −1 to 0 (step size=0.025). θ̃1 ≤ Hθ for the paths

indicated by 4’s. θ̃1 > Hθ for the paths indicated by *’s. We see that if θ̃1 is below the

threshold Hθ = −0.388, the price reaction to θ̃1 is non-positive. Once θ̃1 has surpassed

the threshold Hθ = −0.388, the price reaction becomes positive.

Particularly, look at the two paths bordering the hollow area. The south path is for

θ̃ = −0.4. The north path is for θ = −0.375. Although θ̃1 differs by only 0.025 across

the two path groups, the price reactions are very different. On both paths, P0 = 3.612.

However, on the south path, P1 = 3.6 so P1−P0 = −0.012; on the north path, P1 = 3.9583

so P1 − P0 = 0.3463. The difference in the price reaction, P1 − P0, equals 0.3583, which

is more than fourteen times the difference in θ̃1 (0.025).

The immediate return subsequent to the release of θ̃1, P2 − P1 = 0.5, is identical
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across all θ̃1 paths. But the long-run performance for the paths with θ̃1 > Hθ indicated

by *’s, V − P2 = 0.1667, is lower than that for the paths with θ̃1 ≤ Hθ indicated by

4’s, V − P2 = 0.5. This indicates long-run underperformance following a good public

announcement. The underperformance is characteristic of bubble-like episodes in the

stock market (such as the technology bubble of the 1990s, viz. Brunnermeier and Nagel

(2004)), whereas the positive event (that creates the bubble) could be something as simple

as good initial sales or earnings figures for the relevant sector.

More generally, the preceding analysis suggests a testable implication. Specifically,

for stocks that are popular amongst retail investors, we predict a nonlinear response to

positive news, that is a small reaction to modest news announcement, but a dispropor-

tionately larger reaction to major (positive) announcements. Following the large positive

announcements, these stocks should exhibit long-run reversals (conditional on the news).

6 Conclusion

In this paper, we present a model where agents derive direct utility from trading. We

show that the presence of such agents causes assets to be overpriced, attenuates beta

pricing and volatility, and raises trading volume in financial markets. Assets with high

trading volume earn lower expected returns. Assuming that agents derive greater utility

from trading more volatile stocks, our model accords with a set of intriguing empirical

findings: Volatility is priced negatively in the cross-section, but positively in the aggregate

(viz. Haugen and Baker (2010)). Agents with greater utility from trading exploit private



Untested implications of our analysis are that stocks that are popular amongst retail

investors should exhibit weaker evidence of covariance risk pricing and lower volatility,

with greater trading activity. These stocks should also exhibit disproportionate price

reactions to moderately positive news announcements. The analysis, under reasonable

additional assumptions, also accords with a variety of documented stylized facts: the

negative relation between average returns and volume as well as idiosyncratic (or total)

volatility (Datar, Naik, and Radcliffe (1998), Ang, Hodrick, Xing, and Zhang (2006),

Baker and Haugen (2012)), the lack of evidence consistent with covariance risk pricing

(Fama and French (1992)), the pricing of covariance risk conditional on sentiment (Anto-

niou, Doukas, and Subrahmanyam (2016)), and the rise of volatility in conjunction with

the rise in institutional holdings (Campbell, Lettau, Malkiel, and Xu (2001) and Malkiel

and Xu (1999)).

Our work raises many issues. First, it would be interesting to examine a fully dy-

namic model with exits and entry by such agents. Second, it may be interesting to



Appendix A

Proof of Corollary 1: From Proposition 1, aj(Gj) =
1

ρ

νθj

+
1 − ρ

νθj
−Gj/γ2

. It is easy to

show after taking derivatives that aj(Gj) decreases in Gj , and increases in ρ. Finally,

aj(0) =
1

ρ

νθj

+
1 − ρ

νθj

= νθj
.

Q.E.D.

Proof of Proposition 2: (i) From Corollary 1, aj(Gj) < aj(Gj′) because Gj > Gj′.

Note that λj =
γaj(Gj)Var(R̃M)

νθj
+ 2γ2aj(Gj)2νzj

. For λj < λj′ , it suffices that

aj(Gj)

νθj
+ 2γ2aj(Gj)2νzj

− aj(Gj′)

νθj
+ 2γ2aj(Gj′)2νzj

∝ aj(Gj)
[

νθj
+ 2γ2aj(Gj′)

2νzj

]

− aj(Gj′)
[

νθj
+ 2γ2aj(Gj)

2νzj

]

=
[

aj(Gj) − aj(Gj′)
][

νθj
− 2γ2aj(Gj′)aj(Gj)νzj

]

∝ 2γ2aj(Gj′)aj(Gj)νzj
− νθj

< 2γ2ν2

θj
νzj

− νθj

< 0,

where the second “∝” follows from aj(Gj) < aj(Gj′), the first inequality follows from

aj(Gj), aj(Gj′) < νθj
(see Corollary 1), and the last inequality obtains under the assump-

tion νzj
<

1

γ2νθj

min(1/4, ρ/2) (see Condition (2)).

(ii) If Gj/γ
2 ↗ νθj

, then aj(Gj) =
1

ρ

νθj

+
1 − ρ

νθj
−Gj/γ2

↘ 0 so that λj ↘ 0.

Q.E.D.

Proof of Proposition 3: (i) From Corollary 1, aj(Gj) < νθj
. Therefore, the β-adjusted

expected return of the j’th basic security −γ
[

νθj
+ 2γ2aj(Gj)

2νzj
− aj(Gj)

]

ξ̄j < 0.

35



(ii) From Corollary 1, aj(Gj) < aj(Gj′) because Gj > Gj′ . The difference between the

β-adjusted expected returns of the j’th and j′’th basic securities is

−γ
[

νθj
+ 2γ2aj(Gj)

2νzj
− aj(Gj)

]

ξ̄j + γ
[

νθj
+ 2γ2aj(Gj′)

2νzj
− aj(Gj′)

]

ξ̄j

= γ
[

aj(Gj) − aj(Gj′) − 2γ2(aj(Gj)
2 − aj(Gj′)

2)νzj

]

ξ̄j

∝ 2γ2(aj(Gj) + aj(Gj′))νzj
− 1

< 4γ2νθj
νzj

− 1

< 0,

where the “∝” follows from aj(Gj) < aj(Gj′), the first inequality follows from aj(Gj), aj(Gj′) <

νθj
(see Corollary 1), and the last inequality obtains under the assumption νzj

<
1

γ2νθj

min(1/4, ρ/2)

(see Condition (2)).

Q.E.D

Proof of Corollary 3: Write Eqs. (9) and (10) as

XNG,j(Pj) − (ξ̄j + z̃j) ∼ N(ANGξ̄j , A
2

NGνzj
),

XG,j(Pj) − (ξ̄j + z̃j) ∼ N(AGξ̄j, A
2

Gνzj
),

where

ANG ≡ aj(Gj)

νθj

− 1, and AG ≡ aj(Gj)

νθj
−Gj/γ2

− 1.

Here are some intermediate results we will use in the proof of this corollary. First,

ANG < 0 and decreases in Gj from Corollary 1. Second, AG =
aj(Gj)

νθj
−Gj/γ2

−



of XNG,j(Pj)−(ξ̄j +z̃j) and XG,j(Pj)−(ξ̄j +z̃j),
13 we can express the total expected trading

volume in the j’th basic security (Eq. (11)) as

Tj = 0.5ρE
[

|XNG,j(Pj) − (ξ̄j + z̃j)|
]

+ 0.5(1 − ρ)E
[

|XG,j(Pj) − (ξ̄j + z̃j)|
]

= 0.5ρ(−ANG
√
νzj

)
[

2φ(− ξ̄j√
νzj

) − ξ̄j√
νzj

(1 − 2Φ(
ξ̄j√
νzj

))
]

+0.5(1 − ρ)AG
√
νzj

[

2φ(
ξ̄j√
νzj

) +
ξ̄j√
νzj

(1 − 2Φ(− ξ̄j√
νzj

))
]

.

Footnote 13 indicates that the values in the brackets are positive. From the above analysis,

ANG decreases in Gj, and AG increases in Gj . Therefore, Tj increases in Gj .

Q.E.D.

Proof of Lemma 1: From Proposition 1,
Var(R̃j)

Var(R̃M )
=

νθj
+ γ2aj(Gj)

2νzj

Var(R̃M )
. This im-

plies that typical basic securities with small
Var(R̃j)

Var(R̃M )
also have small

νθj

Var(R̃M )
and

γ2aj(Gj)
2νzj

Var(R̃M )
. We will use this property in the proof of this Lemma.

From Eq. (12), Proposition 1, and our computation of Cov(R̃j , R̃M) in Appendix B,

IVOLj = Var(R̃j) −
Cov(R̃j , R̃M)2

Var(R̃M )

= νθj
+ γ2aj(Gj)

2νzj
− (νθj

+ 2γ2aj(Gj)
2νzj

)2ξ̄2
j

Var(R̃M )
.

Denote G(νθj
) = µνθj

. It follows that for the j’th and j′’th typical basic securities,

IVOLj − IVOLj′ =
[

νθj
+ γ2aj(G(νθj

))2νzj

]

−
[

νθj′
+ γ2aj(G(νθj′

))2νzj

]

−
νθj

+ 2γ2aj(G(νθj
))2νzj

+ νθj′
+ 2γ2aj(G(νθ′

j
))2νzj

Var(R̃M )
ξ̄2

j

[

[

νθj
+ 2γ2aj(G(νθj

))2νzj

]

−
[

νθj′
+ 2γ2aj(G(νθj′

))2νzj

]

]

13 If y ∼ N(ȳ, ν),



=
[

νθj
+ γ2aj(G(νθj

))2νzj

]

−
[

νθj′
+ γ2aj(G(νθj′

))2νzj

]

−δ
[

[

νθj
+ 2γ2aj(G(νθj

))2νzj

]

−
[

νθj′
+ 2γ2aj(G(νθj′

))2νzj

]

]

= (1 − δ)(νθj
− νθj′

) + (1 − 2δ)γ2νzj

[

aj(G(νθj
))2 − aj(G(νθj′

))2
]

,

where δ =
νθj

+ 2γ2aj(G(νθj
))2νzj

+ νθj′
+ 2γ2aj(G(νθ′j

))2νzj

Var(R̃M)
ξ̄2

j . It follows from the above

derived property that for the j’th and j′’th typical basic securities, δ must be small.

Thus, 1 − δ, 1 − 2δ > 0. Note that νθj
> νθj′

. For IVOLj > IVOLj′, it suffices that

aj(G(νθj
)) > aj(G(νθj′

)), which holds because

daj(G(νθj
))

dνθj

= aj(G(ν
� θj

+j))′,-Tf
7141]T�
= a

j(aj(G(ν



Proof of Proposition 5: It follows from Eq. (13) that

E(R̃M) =
K+N
∑

j=1

E
[

ξ̄j θ̃j + z̃j θ̃j + γaj(Gj)(ξ̄
2

j + 2ξ̄j z̃j + z̃2

j )
]

=
K+N
∑

j=1

[



It follows immediately that

E(R̃A,G
M ) =

K+N
∑

j=1

E
[

(ξ̄j + z̃j)(θ̃j + γ(νθj
−Gj/γ

2)(ξ̄j + z̃j))
]

=
K+N
∑

j=1

[

γ(νθj
−Gj/γ

2)(ξ̄2

j + νzj
)
]

,

Var(R̃A,G
M ) =

K+N
∑

j=1

[

(νθj
+ 4γ2(νθj

−Gj/γ
2)2νzj

)ξ̄2

j + νθj
νzj

+ 2γ2(νθj
−Gj/γ

2)2ν2

zj

]

,

where the last equality follows from Eq. (6) because the all-G economy is the case in

which a(Gj) = νθj
−Gj/γ

2.

A direct comparison indicates that E(R̃A,NG
M ) > E(R̃A,G

M ) and Var(R̃A,NG
M ) > Var(R̃ ~



∝ 2γ2aj(Gj)νzj
− ρ

< 2γ2νθj
νzj

− ρ

< 0,

where the second “∝” and the first inequality follow from aj(Gj) < νθj
(see Corollary 1),

and the last inequality obtains under the assumption νzj
<

1

γ2νθj

min(1/4, ρ/2) (see Con-

dition (2)).

Q.E.D.

Proof of Proposition 8: Note that

V |θ̃ ∼ N( ¯



Conjecture that the stock price takes the linear form given in Eq. (19). An i’th G

trader, who chooses to remain uninformed, can infer ω from the stock price. Note that

V |ω ∼ N(V̄ +
νθ

νω

ω, νθ(1 − νθ

νω

) + νε).

The uninformed trader has the following expected utility conditional on ω:

E
[

UG,U (Wi1)|ω
]

= −exp
[

−γ
[

Wi0

+Xi(E(V |ω) − P ) − 0.5γX2

i (Var(V |ω) −G/γ2)
]

]

. (24)

The f.o.c. w.r.t. Xi implies that his demand can be expressed as:

XG,U (P, ω) =
E(V |ω) − P

γ(Var(V |ω) −G/γ2)
=

V̄ +
νθ

νω

ω − P

γ(νθ(1 − νθ

νω

) + νε −G/γ2)
. (25)

The market clearing condition requires that

ξ̄ + z̃ = ρ ·XNG(P, θ̃) + (1 − ρ)τ ·XG,I(P, θ̃) + (1 − ρ)(1 − τ



Proof of Lemma 2: Consider an informed G trader’s expected utility, given by Eq. (22).

Plugging in the optimal demand for the stock in Eq. (23) yields

E
[

UG,I(Wi1)|θ̃
]

= −exp
[

−γ(Wi0 − c)
]

exp
[

−0.5

[

E(V |θ̃) − P
]2

Var(V |θ̃) −G/γ2

]

= −exp
[

−γ(Wi0 − c)
]

exp
[

−0.5
(V̄ + θ̃ − P )2

νε −G/γ2

]

= −exp
[

−γ(Wi0 − c)
]

exp
[

−0.5
Var(θ̃|ω)

νε −G/γ2
Y 2

]

,

where Y ≡ V̄ + θ̃ − P
√

Var(θ̃|ω)
and Y |ω ∼ N(

V̄ + E(θ̃|ω) − P
√

Var(θ̃|ω)
, 1). Thus,

E
[

UG,I(Wi1)|ω
]

= E
[

E
[

UG,I(Wi1)|θ̃
]

|ω
]

= −exp
[

−γ(Wi0 − c)
]

E
[

exp
[

−0.5
Var(θ̃|ω)

νε −G/γ2
Y 2

]

|ω
]

= −
exp

[

−γ(Wi0 − c)
]

√

√

√

√1 +
Var(θ̃|ω)

νε −G/γ2

exp
[

−0.5

Var(θ̃|ω)

νε −G/γ2



It follows immediately that

E
[

UG,I(Wi1)|ω
]

− E
[

UG,U (Wi1)|ω
]

=
[

exp(γc)

√

√

√

√

Var(V |θ̃) −G/γ2

Var(V |ω) −G/γ2
− 1

]

E
[

UG,U (Wi1)|ω
]

.

Taking the ex ante expectation yields

E
[

UG,I(Wi1)
]

− E
[

UG,U (Wi1)
]

=
[

exp(γc)

√

√

√

√

Var(V |θ̃) −G/γ2

Var(V |ω) −G/γ2
− 1

]

E
[

UG,U (Wi1)
]

.



Var(V |ω) decreases in G.

(ii) Consider Eq. (20) again. It is obvious that Var(V |ω) depends on variables such as

c, γ, G, and Var(V |θ̃), which do not involve ρ.

Q.E.D.

Proof of Proposition 10: We solve for the equilibrium and prove the proposition using

backward induction, in three steps.

Step 1: In this step, suppose θ̃1 > Hθ and therefore P1 > P0 (which we will show

below). An agent remains a non-G trader (becomes a G trader) with probability ρ (1−ρ).

Thus, there is a mass ρ of non-G traders and a mass 1 − ρ of G traders at Date 2.

Focus on Date 2 for the moment. Write an i’th non-G trader’s wealth at Date 3 as

Wi3 = Wi2 +Xi2(V − P2). His expected utility at Date 2 can be expressed as:

E
[

UNG(Wi3)|θ̃1, θ̃2

]

= −exp
[

−γWi2

−γ
[

Xi2(E(V |θ̃1, θ̃2) − P2) − 0.5γX2

i2Var(V |θ̃1, θ̃2)
]

]

. (26)

He needs to choose Xi2 to maximize this expected utility. The f.o.c. implies that his

demand can be expressed as:

XNG,2(θ̃1, θ̃2, P2) =
E(V |θ̃1, θ̃2) − P2

γVar(V |θ̃1, θ̃2)
=
V̄ + θ̃1 + θ̃2 − P2

γνθ

. (27)

An i’th G trader’s expected utility at Date 2 can be expressed as:

E
[

UG(Wi3, Xi2))|θ̃1, θ̃2

]

= −exp
[

−γWi2

−γ
[

Xi2(E(V |θ̃1, θ̃2) − P2) − 0.5γX2

i2Var(V |θ̃1, θ̃2) + 0.5GX2

i2/γ
]

]

. (28)

He needs to choose Xi2 to maximize this expected utility. The f.o.c. implies that his

demand can be expressed as:

XG2(θ̃1, θ̃2, P2) =
E(V |θ̃1, θ̃2) − P2

γVar(V |θ̃1, θ̃2) −G/γ
=
V̄ + θ̃1 + θ̃2 − P2

γ(νθ −G/γ2)
. (29)

45



It follows from Eqs. (27) and (29) that the market clearing condition requires

ξ̄ = ρ ·XNG,2(θ̃1, θ̃2, P2) + (1 − ρ) ·XG2(θ̃1, θ̃2, P2)

=
ρ



He needs to choose Xi1 to maximize this expected utility. The f.o.c. implies that his

demand can be expressed as:

X1(θ̃1, P1) =
E(P2|θ̃1) − P1

γVar(P2|θ̃1)
=
V̄ + θ̃1 − γa(G)ξ̄ − P1

γνθ

.

The market clearing condition, X1(θ̃1, P1) = ξ̄, implies

P1 = V̄ + θ̃1 − γνθ ξ̄ − γa(G)ξ̄. (33)

Plugging the derived X1(P1, θ̃1) and P1



characterized by Eqs. (33) and (34). If θ̃1 ≤ Hθ so P1 ≤ P0 and he does not make money,

he will remain a non-G trader for sure. He will be in the regime characterized by Eqs. (35),

and (36). Accounting for both cases, we can write his expected utility at date 0 as

E



It is straightforward to show that the right hand side of this equation decreases in Hθ,

and is positive (negative) if Hθ ↘ −∞ (Hθ ↗ ∞). Therefore, Hθ is uniquely determined

by this equation.

Q.E.D.
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Appendix B

[Computation of Market Portfolio’s Return Volatility From the Definition in

Section 2.3)]

From Proposition 1, the returns of the j



[Computation of the Covariance between the j’th Basic Security’s and Market

Portfolio’s Returns From the Definition in Section 2.4)]

From the expressions of R̃j and R̃M ,

Cov(R̃j, R̃M ) = Cov(R̃j ,
K+N
∑

j=1

(ξ̄j + z̃j)R̃j)

= Cov(R̃j , (ξ̄j + z̃j)R̃j) = Cov(R̃j, ξ̄jR̃j) + Cov(R̃j, z̃jR̃j),

where the second equality obtains because basic securities have independent random sup-

plies and payoffs.

Cov(R̃j , ξ̄jR̃j) = ξ̄jVar(R̃j) = νθj
ξ̄j + γ2aj(Gj)

2νzj
ξ̄j ,

Cov(R̃j, z̃jR̃j) = E(z̃jR̃
2

j ) −E(R̃j)E(z̃jR̃j)

= E
[

z̃j(θ̃j + γaj(Gj)(ξ̄j + z̃j))
2
]

−E
[

θ̃j + γaj(Gj)(ξ̄j + z̃j)
]

E
[

z̃j(θ̃j + γaj(Gj)(ξ̄j + z̃j))
]

= i
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Figure 1: Price Reaction and Long-Run Performance
This graph plots the price paths conditional on the public announcement θ̃1. We assume the

parameter values V̄ = 5, νθ = 1, ξ̄ = 1, γ = 0.5, ρ = 0.5, and G = 0.2. This implies that
the threshold for the probabilistic conversion to a G trader is Hθ = −0.388. The realizations

of θ̃2 and θ̃3 are assumed to be zero, i.e., their mean. From the bottom to the top, each path
represents a realization of θ̃1 from -1 to 0 (step size=0.025). θ̃1 ≤ Hθ for the paths indicated by
4’s. θ̃1 > Hθ for the paths indicated by *’s.
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