# An axiomatic theory for comonotonicity-based risk sharing

J. Dhaene , C.Y. Robert, K.C. Cheung, M. Denuit

AFRIC, Victoria Falls, July 2023

#### 1. Introduction

Consider a pool of individual random future losses.

Decentralized risk-sharing:

Refers to risk-sharing (RS) mechanisms under which the participants in the pool share their risks among each other.

Each <u>participant</u> in the <u>risk-sharing pool</u> is compensated *ex-post* from the pool for his loss.

In return, each participant pays an ex-post <u>contribution</u> to the pool.

These contributions follow from a <u>risk-sharing rule</u>, satisfying the *self-...nancing condition*.

Decentralized risk-sharing does not require an insurer, but an <u>administrator</u>.

Agents and their losses

Let c be an appropriate (sut ciently rich) set of r.v.'s in the probability space (W, , P), representing random losses at time 1.<sup>1</sup>

Consider *n* economic agents, numbered i = 1, 2, ..., n.

Each agent *i* faces a loss  $X_i$  c at the end of the observation period [0, 1].

Without insurance or pooling, each agent bears his own loss:

The joint cdf of the <u>loss vector</u>  $X = (X_1, X_2, ..., X_n)$  is denoted by  $F_X$ .

The marginal cdf's of the individual losses are denoted by  $F_{X_1}, F_{X_2}, \ldots, F_{X_n}$ .

The <u>aggregate loss</u> faced by the *n* agents with loss vector X is denoted by  $S_{X} = a_{i=1}^{n} X_{i}$ .

Hereafter, we will often call X the <u>pool</u>, and call each agent a participant in the pool.

#### 2. Risk-sharing and risk-sharing rules Allocations

<u>De...nition</u>: For any pool X  $C^n$  with aggregate loss  $S_X$  the set  $_n(S_X)$  is de...ned by:  $(S_X) = (Y_1, Y_2, \dots, Y_n) \quad C^n \quad \overset{n}{\stackrel{a}{\Rightarrow}} Y_i = S_X$ 

The elements of  $n(S_X)$  are called the *n*-dimensional <u>allocations</u> of  $S_X$  in  $C^n$ .

#### 2. Risk-sharing and risk-sharing rules Risk-sharing

<u>De...nition</u>: <u>Risk-sharing</u> in a pool  $X = C^n$  is a two-stage process.

Ex-ante step (at time 0):

The losses  $X_i$  in the pool are re-allocated by transforming X into another random vector  $H_X$   $n(S_X)$ :

$$H_{\mathsf{X}} = H_{\mathsf{X},1}, H_{\mathsf{X},2}, \ldots, H_{\mathsf{X},n}$$

Ex-post step (at time 1):

Each participant *i receives from the pool* the realization of his loss  $X_{i}$ .

In return, he *pays to the pool* a contribution equal to the realization of his re-allocated loss  $H_{X,i}$ .

<u>Remark</u>: As  $H_X = n(S_X)$ , risk sharing is self-...nancing:

$$\overset{n}{\overset{a}{a}}H_{\mathbf{X},i}=\overset{n}{\overset{a}{a}}X_{i}$$

#### 2. Risk-sharing and risk-sharing rules Risk-sharing rules

<u>De...nition</u>: A <u>risk-sharing rule</u> is a mapping  $H : C^n = C^n$  satisfying the self-...nancing condition:

 $X H_X n(S_X)$ , for any  $X c^n$ 

<u>Remarks</u>: For any participant *i* in the pool  $X = (X_1, ..., X_n)$ ,  $X_i$  is called his <u>loss</u>, (paid by the pool).

 $H_{X,i}$  is called his <u>contribution</u>, (paid to the pool).

Contribution vector:

$$H_{X} = H_{X,1}, H_{X,2}, \ldots, H_{X,n}$$

Internal risk-sharing rules

#### Notation

Aggregate risk-sharing rules

$$\mathbf{H}_{\mathbf{X}}=\mathbf{h}^{\mathrm{aggr}}\left( S_{\mathbf{X}},F_{\mathbf{X}}\right)$$

<u>Property</u>: Any aggregate RS rule H is internal, with internal function h satisfying:

$$h(X; F_X) = h^{aggr}(S_X, F_X)$$
 for any  $X c^n$ 

Dependence-free risk-sharing rules

<u>De...nition</u>:  $H : c^n \quad c^n$  is a <u>dependence-free RS rule</u> if there exists a function  $h^{dep-free} : R^n \quad ((c))^n \quad R^n$  such that the contribution vector  $H_X$  of any  $X \quad c^n$  is given by:

$$\mathbf{H}_{\mathbf{X}} = \mathbf{h}^{\mathsf{dep-free}} \left( \mathbf{X}, F_{X_1}, \dots, F_{X_n} \right)$$

<u>Property</u>: Any dependence-free RS rule H is internal, with internal function h satisfying:

$$\mathbf{h}(\mathbf{X}; F_{\mathbf{X}}) = \mathbf{h}^{\mathsf{dep-free}}(\mathbf{X}, F_{X_1}, \dots, F_{X_n}) \qquad \text{for any } \mathbf{X} \quad c^n$$

#### 3. Examples of risk-sharing rules

The conditional mean risk-sharing rule

De...nition<sup>2</sup>: The conditional mean RS rule H<sup>cm</sup> is de...ned by

 $H_i^{\rm cm}(\mathbf{X}) = \mathsf{E} \begin{bmatrix} X_i & S_{\mathbf{X}} \end{bmatrix}, \qquad i = 1, 2, \dots, n.$ 

for any  $\mathbf{X} = c^n$ .

Interpretation: Each participant contributes the expected value of the loss he brings to the pool, given the aggregate loss experienced by the pool.

Property:

H<sup>cm</sup> is internal and aggregate, but not dependence-free.

## 4. The quantile risk-sharing rule

Let  $\mathbf{x} = (x_1, x_2, \dots, x_n)$  be the realization of X.

There exist probabilities  $p_1, \ldots, p_n$  such that

$$x = F_{X_1}^{1}$$

#### 4. The quantile risk-sharing rule

De...nition:

Under the <u>quantile RS rule</u> H<sup>quant</sup> :  $C^n$   $C^n$ , the contribution vector of X  $C^n$  is given by  $H_X^{quant} = h^{quant} (S_X, F_X)$ where  $h^{quant} : R (C^n) R^n$  is de...ned by  $h_i^{quant} (s, F_X) = F_{X_i}^{-1} F_{S_X^c}(s)$ , i = 1, 2, ..., n

Properties:

H<sup>quant</sup> satis...es the self-...nancing condition.
H<sup>quant</sup> is an aggregate RS rule.
H<sup>quant</sup> is a dependence-free RS rule.

5. The 'stand-alone for comonotonic pools' property

<u>De...nition:</u>  $X = c^n$  is a comonotonic pool in case

$$\mathbf{X} \stackrel{\mathrm{d}}{=} F_{X_1}^{-1}(U), \dots, F_{X_n}^{-1}(U)$$

<u>De...nition</u>: A RS rule  $H : c^n = c^n$  satis...es the stand-alone for comonotonic pools property if for any comonotonic pool  $X^c = c^n$ , one has that

$$\mathsf{H}_{\mathsf{X}^{\mathcal{C}}}=\mathsf{X}^{\mathcal{C}}$$

Property: H<sup>quant</sup> satis...es the stand-alone for comonotonic pools property.

#### 6. Axiomatic characterization of the quantile RS rule

Theorem:

Consider the internal RS rule  $H : c^n = c^n$ .

H is the quantile RS rule if, and only if, it satis...es the following axioms:

- (1) H is aggregate.
- (2) H is dependence-free.
- (3) H is (generalized) stand-alone for comonotonic  $pools^4$ .

Proposition: The axioms (1), (2) and (3) are independent.

 $<sup>^{4}</sup>$ The 'generalized stand-alone for comonotonic pools' property is a slightly stronger property than the 'stand-alone for comonotonic pools' property, see D,R,C,D (2023).

#### 6. Axiomatic characterization of the quantile RS rule

Graphical proof of the theorem (bivariate case)



$$\mathsf{h}\left(\mathsf{x}\;\;, \mathit{F}_{\mathsf{X}}
ight) \stackrel{\mathsf{axiom 1}}{=} \mathsf{h}\left(\mathsf{x}^{\mathsf{c}}, \mathit{F}_{\mathsf{X}}
ight) \stackrel{\mathsf{axiom 2}}{=} \mathsf{h}\left(\mathsf{x}^{\mathsf{c}}, \mathit{F}_{\mathsf{X}^{\mathsf{c}}}
ight) \stackrel{\mathsf{axiom 3}}{=} \mathsf{x}^{\mathsf{c}}$$

### 6. Axiomatic characterization of the quantile RS rule

Graphical proof of the theorem (bivariate case)



$$\mathsf{h}\left(\mathsf{x}\;\;, \mathit{F}_{\mathsf{X}}
ight) \stackrel{\mathsf{axiom 1}}{=} \mathsf{h}\left(\mathsf{x}^{\mathsf{c}}, \mathit{F}_{\mathsf{X}}
ight) \stackrel{\mathsf{axiom 2}}{=} \mathsf{h}\left(\mathsf{x}^{\mathsf{c}}, \mathit{F}_{\mathsf{X}^{\mathsf{c}}}
ight) \stackrel{\mathsf{axiom 3}}{=} \mathsf{x}^{\mathsf{c}}$$

#### 7. Example of a non-internal risk-sharing rule

Consider the RS rule  $H : c^n = c^n$ , where any  $X = c^n$  is a pool of health-related costs of the participants.

#### References

#### Contact

Jan Dhaene Actuarial Research Group, KU Leuven Naamsestraat 69, B-3000 Leuven, Belgium

www.jandhaene.org

jan.dhaene@kuleuven.be